
11. NUMERICAL TECHNIQUES 

Abstract — Sparse matrix-vector multiplication (SpMV) is 
an essential kernel used in many scientific applications and 
although it is parallelizable, it only reaches a small amount of 
the attainable peak performance of the processor. As the core 
count increases on a processor, using all cores to speedup 
SpMV can be a major resources waste. This paper attempts to 
understand the limitations of this kernel through quantifying 
its performance and relating it to the processor's parameters. 
This provides the basis for an appropriate resource mapping 
on multi-core processors. 

I. INTRODUCTION 

 The SpMV is an essential kernel present in many 
numerical computations. In particular, it is important for the 
computational electromagnetics community, since it is an 
essential building block of conjugate gradient (CG) 
methods, which are used to solve a system of linear 
equations. 
 It is well known that matrix-vector multiplication 
ݕ) ൌ ܣ ∗  exhibits a low floating point operations count to (ݔ
memory access ratio. In this paper, we attempt to evaluate 
the performance of SpMV on any architecture, by relating 
the hardware architecture parameters to the matrix 
properties. Our first goal is to determine the optimal 
number of threads to be used for a specific problem on a 
specific processor. The second goal involves evaluating the 
performance of SpMV in the presence of other running 
methods and kernels on the remaining cores. These two 
goals are based on our argument that, as the number of 
cores increases, leveraging the power of a multi-core 
processor would be a combination of running fine grained 
parallel algorithms and other methods in an ad-hoc manner. 
It is crucial to understand each kernel and to be able to form 
a prediction of its behavior in the presence of other running 
methods. 

II.  OVERVIEW 

 Sparse matrix-vector multiplication is ubiquitous in many 
scientific domains. There is a wide literature attempting to 
optimize this kernel to a specific computer architecture. The  
interest of this paper resides in  running such a kernel on a 
multi-core based processor.  
 It is clear that matrix-vector multiplication, whether the 
matrix is dense or sparse, is parallelizable, since many 
operations can be performed simultaneously. Nevertheless, 
the low attainable FLOPS is mainly due to a memory 
bottleneck. The matrix ܣ presents a problem due to the 
large number of memory operations with no data reuse. 
 The peak performance attainable in sparse matrix-vector 
multiplication is always less than that of a dense matrix of 

similar size. This is mainly due to the following: First, a 
more complex data storage structure is needed in order to 
store the non-zeros, an example is Compressed Row 
Storage (CRS)[1]; this will lead to indirect access to the 
matrix	ܣ. Second, the non-zero pattern is unpredictable, 
which could cause unpredictable access to the ݔ	and ݕ 
vectors. Finally, for some matrices with low non-zero count 
per row, the loop setup overhead would dominate the time 
of the calculation and would not be able to be amortized 
over the short calculation time of a few non-zeros. The 
author in [2]has examined the extent of these effects and 
found that the problems mentioned above vary greatly, 
depending  upon the problem and the processor’s 
architecture.  
 Further attempts to understand and optimize the 
performance of the SpMV kernel on multi-core based 
processors have been described in [3-4]. They have 
identified many serial (e.g. register blocking, cache 
blocking, etc.) optimization strategies and parallel 
decomposition techniques and applied them on a set of test 
matrices and different multi-core processor architectures. 
The results have shown that the effect of an optimization 
technique depends on the matrix and the platform. An 
investigation of this variation has been carried out 
qualitatively, that is by observing the particularity of those 
matrices which provided high performance, low 
performance, or discrepancy of performance amongst 
different architectures. 
 Despite the fact that the above mentioned techniques can 
provide a performance gain, SpMV is still reaching only a 
low percentage of the processor's theoretical peak 
performance; for an Intel Clovertown processor, the 
attainable peak performance has been less than 5% of the 
theoretical peak[3]on average. 

III. METHODOLOGY 

  This paper attempts to obtain a quantitative estimation 
of the performance of SpMV (serial and parallel) and to 
further understand how this performance is altered when 
SpMV runs as part of a CG solver, or when multiple 
SpMV’s run simultaneously. As the number of processor 
cores increases on a desktop computer, using the cores for 
multiple tasks, as opposed to using all the cores for a 
specific parallel kernel, would require resource mapping 
and is a significant challenge. 
 In the first set of experiments, the effect of cache misses 
of the vector ݔ will be assessed in a way similar to that 
performed in [2]. An efficient, non-optimized 
implementation of SpMV will be compared to another 
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version which does not multiply by ݔ, but rather by a fixed 
value, thus removing the cache misses. Of course, the result 
of the latter routine is not correct. The runtime ratio has 
been obtained for experimental runs using a set of matrices 
as shown in Fig.1(Experimental). This ratio shows the 
magnitude of the effect of the cache misses on	ݔ.   

In order to analytically understand such an effect, a 
distance model has been developed that takes into account 
the cache line size of the processor used (Intel Quad core 
Q6600-8 MB L2 - 2.4 GHz). The vector which contains the 
column CRS format (which contains the column ݔ indices), 
is analyzed to determine where each jump in the array that 
is larger than the cache line size will occur and this will 
count as a cache miss. The total number of cache misses are 
obtained and divided by the number of the non-zeros of the 
matrix. The result is plotted in Fig.1Fig.1(Analytical). This 
figure shows that the magnitude of the effect of cache 
misses can be predicted by looking at the access pattern of 
the ݔvector.  

 
Fig.1. Cache miss effect using the distance model 

  

IV. PARALLEL SPMV 

 A parallel SpMV has been applied to two sets  of 
matrices obtained from [5]. The first set has a storage size 
in CRS format ranging between 10 MB and 100MB (Fig.2), 
the latter have a storage size in CRS format larger than 
500MB (Fig.3). In the parallel SPVM used, the matrix is 
divided into blocks of rows where each block is assigned to 
a thread. By using this non-optimized version of parallel 
SpMV, the magnitude of the effect of cache misses could 
be related to the matrix's  and processor's properties in order 
to know which optimization techniques to use and what 
number of threads to utilize. 
 The preliminary results show that for matrices less than 
100MB, a speedup gain could be obtained for a number of 
threads larger than the number of available cores (although 
the processor used does not support hyper-threading), while 
this was not true for large matrices where using 2 threads 
was the optimal choice. 

V.  CONCLUSION 

 The SpMV exhibits different performance behavior as 
the number of threads increases. By using a non-optimized 

parallel SpMV and analyzing the memory access patterns, 
the effect of the available tuning techniques can be 
predicted. This will be the main work of the extended 
version of this paper, i.e. to understand the limitation of 
SpMV and the optimal number of threads to use. This 
information will form the basis of algorithms and allocation 
techniques which will lead to a more effective utilization of 
the multi-core processor. 
 

 
Fig.2. Matrices from  electromagnetics problems (CRS storage < 100MB) 

 

 
Fig.3. Miscellaneous Matrices (CRS storage > 500 MB) 
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